Al-Farabi Kazakh National University Faculty of Theoretical and Nuclear Physics Department of Theoretical and Nuclear Physics

EDUCATIONAL-METHODICAL COMPLEX OF DISCIPLINE

VTYa 3301 "Introduction to the nucleus theory"

Specialty "5B060400 - Physics"
Educational program " Theoretical Physics " IET 1

Course – 4 Semester – 7 Number of credits – 3

Almaty 2017

Educational-methodical complex of the discipline is made by <u>Takibayev Nurgali</u> <u>Zhabagaevich, d.s.pm., academic of NAS RK, professor</u> (name, surname, scientific degree, academic rank)
Based on the working curriculum on the specialty "5B060400 - Physics" Considered and recommended at the meeting of the department of Theoretical and Nuclear Physics
from «_05_ »09 2017 year, protocol № 2
Head of department Abishev M.Y. (Signature)
Recommended by methodical bureau of the faculty «06»09 2017 year, protocol № 1
Chairman of the method bureau of the facultyGabdullina A.T. (Signature)

Al-Farabi Kazakh National University Faculty of Physics and Technology Chair of Theoretical and Nuclear Physics

Syllabus Autumn semester, 2017-2018 academic year

Academic course information

Discipline's Discipline's Type No. of hours per wee			ek	Number of	ECTS			
code	title		Lect.	Pract.	Lab.	credits		
VTYa 3301	Introduction to the nucleus theory	Elective	2	1	0	3	5	
Lecturer	TakibayevN.2 of NAS RK,	.Zh., d.s.pm., academic professor payev@gmail.com		nic Office	hours	Scheduled		
e-mail	E-mail: takiba							
Telephone number	Telephone: 0396	2925-133;	8-777-70	04- Audit	ory	31	9	

Academic	Typeofcourse (theoretical, practical; basic, elective) and its purpose (role and
presentation of	place of the course in the educational program): Theoretical Nuclear Physics.
the course	The aim of the course: to give the students the deep understanding of the modern physics of nucleus of atoms and quantum mechanics of many-particle
	systems and self study, to form a system of competences in the context of qualification requirements: *
	A) cognitive: be able to - demonstrate acquired knowledge (specifically) and it's
	understanding; - demonstrate an understanding of the overall structure of the study field and the relations between its elements (specifically);
	B) functional: be able to – include new knowledge in the context of basic knowledge, interpret its contents; - analyze educational situation and offer
	direction to solve it; - use methods (research, calculation, analysis, etc.) inherent to the field of study (specifically) individually or in a group teaching and
	research activities; **
	C) systemic: be able to - synthesize, interpret and evaluate the learning outcomes of discipline, modules, midterm exam content (specifically); make an analysis of
	D) Social: be able to - constructive educational and social interaction and cooperation in the group; - propose to consider a problem, to reason its
	importance; - accept criticism and to criticize; - work in a team;
	E) metacompetences: be able to - recognize the role of taken course in the
	implementation of individual learning paths. *The system of descriptor verbs must be used during the formation of competences (Look in Application 2)
	**Active and interactive methods is recommended to ensure deeper understanding and learning of educational material and to achieve learning out
	comes of the course (individual researches, group projects, case studies and there methods).

	a la sighter differential
Prerequisites	Mathematical analysis, the theory of functions of complex variables, differential
	equations, mathematical physics, statistical physics, physics of elementary
	particles.
Post requisites	Quantum scattering theory, quantum statistical physics.
Information	Literature (with an indication of the authors and data output), the availability
resources	(number), software and consumables with information about where you can get
	them. (8-9)
	Pecommended:
	1. Bethe H.A., Morrison P. Elementary Nuclear Theory, 1st ed. New York:
	Wiley 1947 147 p.
	2. Heyde K. Basic Ideas and Concepts in Nuclear Physics: An
	Introductory Approach, 2nd Edition. Institute of Physics Publishing
	Bristol and Philadelphia, 1999, 547 p.
	3. Kamal A. Nuclear Physics, Springer, 2014. — 612 p. — (Graduate
	Texts in Physics).
	4. Iliadis Ch. Nuclear Physics of Stars, WILEY-VCH Verlag, Weinheim,
	2007, 666 pages Martin B.R. Nuclear and Particle Physics: An
	Introduction, Wiley, 2006. — 415 p.
	5. Takigawa N., Washiyama K., Fundamentals of Nuclear Physics,
	Springer, Japan, 2017. – 277 p.
	Additional:
	1. Shultis J.K., Faw R.E. Fundamentals of Nuclear Science and Engineering,
	Kansas State University Manhattan, Marcel Dekker, New York, Basel, 2002,
	506 pp. 2. Frobrich P., Lipperheide R., Theory of nuclear reactions, Clarendon
	Press, Oxford. 1996 - 476 p.
	3. J.M.Blatt and V.F.Weisskopf, Theoretical Nuclear Physics, Springer,
	1979, VII.5
	4. Nuclear Physics by Irving Kaplan 2nd edition1962 Addison-Wesley
Academic	Academic Behavior Rules:
policy of the	Compulsory attendance in the classroom, the impermissibility of late attendance.
course in the	Without advance notice of absence and undue tardiness to the teacher is
context of	estimated at 0 points.
university	Academic values:
moral and	Inadmissibility of plagiarism, forgery, cheating at all stages of the knowledge
ethical values	control, and disrespectful attitude towards teachers. (The code of KazNU
etilicai varues	Student's honor)
Evaluation and	Criteria-based evaluation:
attestation	Assessment of learning outcomes in correlation withdescriptors (verification of
oolicy	competence formation during midterm control andexaminations).
oney	Summative evaluation:
	evaluation of the presence and activity of the work in the classroom; assessment
	of the assignment, independent work of students, (project / case study / program
	/)
	[/ ···/

Calendar (schedule) the implementation of the course content:

Wee	Topic title (lectures, practical classes, Independent work of	Number	Maximum
ks	students)	of hours	score
	Module 1		
1	Lecture-1 (L-1). Gravitational interaction.	2	-

	Seminar -1 (S-1). Characteristics of fundamental	1	5
	interactions.		
	L-2. Weak interaction.	2	
	S-2. Decay of atomic nuclei.	1	5
	L-3. Electromagnetic interaction.	2	
	S-3. The theory of the Weinberg-Salam-Glashow.	1	5
	SSWT 1. Prepare the report: Electromagnetic interaction	1	20
1	L-4. Strong interaction.	2	-
	S-4. Potential of Yukavo.	1	5
	Module 2		
5	L-5. Some problems of physics of elementary particles.	2	-
	S-5. Quantum chromodynamics.	1	5
	SSWT 2. Prepare the report: Some problems of physics of	1	20
	elementary particles.		
6	L6. The concept of mass in modern physics.	2	
	S6. The concept of mass in modern physics.	1	5
7	L7. Physical experiment: the current state and prospects	2	-
	of development.		
	S7. Some achievements of experimental physics.	1	5
	SSWT 3. Prepare the report: Physical experiment: current	1	25
	state and development prospects.		
	1stIntermediate Control (IC1)		100
8	Midterm (MT)		100
8	L-8. Quarks and nuclei.	2	-
	S-8. The quark structure of the proton and neutron.	1	5
	Module 3		
9	L-9. Particle accelerators.	2	•
	S-9. Largest projects in the world.	1	5
	SSWT 4. Particle accelerators.	1	10
10	L-10. Energetic properties of nuclei.	2	-
	S-10. The binding energy of nuclei.	1	5
11	L-11. Nuclei, which far from the stability region.	2	-
	S-11. Stability region.	1	5
	SSWT 5. Nuclei, which far from the stability region.	1	10
12	L-12. Radioactivity.	2	-
	S-12 General characteristics of radioactive processes.	1	5
13	L-13. Spontaneous fission and spontaneously fissionable	2	•
13	nuclear isomers.		
13			5
13	S-13. Synthesis of transuranic elements.	1	3
13	S-13. Synthesis of transuranic elements. SSW 6. Spontaneous fission of nuclear isomers.	1	20
13			
	SSW 6. Spontaneous fission of nuclear isomers.	1	

15	L-15. Super dense nuclear matter. Transition radiation.	2	-
	S-15. Classification of radiations mechanisms of fast particles in the medium.	1	5
	SSW 7. Feynman diagrams.	1	25
	2ndIntermediate Control (IC2)		100
	Exam		100
-	Total		100

Note: Independent work of students with teacher is 7 hours for semester. 3, 5, 7, 9, 11, 13 and 15 weeksareincludedintosyllabus (assignmentsubmission)

Lecturer	(the	TakibayevN.Zh
Head of the Department	70	Abishev M.E.
Chairman of the Faculty Methodical Bureau	Madaj	A.T.Gabdullina A.T.